Кто открыл законы движения планет 1 балл. Законы кеплера и их связь с законами ньютона

Астрономия конца XVI века отмечает столкновение двух моделей нашей Солнечной системы: геоцентрическая система Птолемея – где центром вращения всех объектов является Земля, и Коперника – где Солнце является центральным телом.

И хотя Коперник был ближе к истинной природе Солнечной системы, его работа имела недостатки. Основным из этих недостатков являлось утверждение, что планеты вращаются вокруг Солнца по круговым орбитам. С учетом этого, модель Коперника практически настолько же не согласовывалась с наблюдениями, как и система Птолемея. Польский астроном стремился исправить данное расхождение при помощи дополнительного движения планеты по кругу, центр которого уже двигался вокруг Солнца — эпицикл. Однако, расхождения в большей своей части не были устранены.

В начале XVII века немецкий астроном Иоганн Кеплер, изучая систему Николая Коперника, а также анализируя результаты астрономических наблюдений датчанина Тихо Браге, вывел основные законы относительно движения планет. Они были названы как Три закона Кеплера.

Немецкий астроном пытался различными способами сохранить круговую орбиту движения планет, однако это не позволяло исправить расхождение с результатами наблюдений. Потому Кеплер прибегнул к эллиптическим орбитам. У каждой такой орбиты есть два так называемых фокуса. Фокусы – это две заданные точки, такие, что сумма расстояний от этих двух точек до любой точки эллипса является постоянной.

Иоганн Кеплер отметил, что планета движется по эллиптической орбите вокруг Солнца таким образом, что Солнце располагается в одном из двух фокусов эллипса, что и стало первым законом движения планет.

Проведем радиус-вектор от Солнца, которое располагается в одном из фокусов эллипсоидной орбиты планеты, к самой планете. Тогда за равные промежутки времени данный радиус-вектор описывает равные площади на плоскости, в которой движется планета вокруг Солнца. Данное утверждение является вторым законом.

Третий закон Кеплера

Каждая орбита планеты имеет точку, ближайшую к Солнцу, которое называется перигелием. Точка орбиты, наиболее удаленная от Солнца, называется афелием. Отрезок, соединяющий эти две точки называется большой осью орбиты. Если разделить этот отрезок пополам, то получим большую полуось, которую чаще используют в астрономии.

Третий закон движения планет Кеплера звучит следующим образом:

Отношение квадрата периода обращения планеты вокруг Солнца к большой полуоси орбиты этой планеты является постоянным, и также равняется отношению квадрата периода обращения другой планеты вокруг Солнца к большой полуоси этой планеты.

Также иногда записывают другое отношение:

Дальнейшее развитие

И хотя законы Кеплера имели относительно невысокую погрешность (не более 1%), все же они были получены эмпирическим способом. Теоретическое же обоснование отсутствовало. Данная проблема позже была решена Исааком Ньютоном, который в 1682-м году открыл закон всемирного тяготения. Благодаря этому закону удалось описать подобное поведение планет. Законы Кеплера стали важнейшим этапом в понимании и описании движения планет.

Коль скоро на сайте завелись "разоблачители", утверждающие, что математика - это ересь, а гравитационного притяжения между планетами вообще не существует, давайте посмотрим, как закон всемирного тяготения позволяет описать явления, установленные эмпирическим путем. Ниже представлено математическое обоснование первого закона Кеплера.

1. Исторический экскурс

Для начала вспомним, как вообще этот закон появился на свет. В 1589 году некто Иоганн Кеплер (1571 - 1630) - выходец из бедной немецкой семьи - заканчивает школу и поступает в Тюбингенский университет. Там он занимается математикой и астрономией. Причем его учитель профессор Местлин, будучи тайным поклонником идей Коперника (гелиоцентрическая система мира), преподает в университете "правильную" теорию - систему мира Птолемея (т.е. геоцентрическую). Что, впрочем, не мешает ему познакомить своего ученика с идеями Коперника, и вскоре тот сам становится убежденным сторонником этой теории.

В 1596 году Кеплер издает свою "Космографическую тайну". Хотя работа представляет сомнительную научную ценность даже по тем временам, тем не менее она не остается незамеченной для датского астронома Тихо Браге, который вел астрономические наблюдения и вычисления уже на протяжении четверти века. Тот замечает самостоятельность мышления молодого ученого и знания им астрономии.

С 1600 года Иоганн работает помощником Браге. После его смерти в 1601 году Кеплер начинает изучать результаты трудов Тихо Браге - данные многолетних астрономических наблюдений. Дело в том, что к концу XVI века прусские таблицы (таблицы движения небесных тел, вычисленные на основе учений Коперника) стали давать существенные расхождения с наблюдаемыми данными: ошибка в положении планет доходила до 4-5 0 .

Для решения проблемы Кеплер был вынужден усложнить теорию Коперника. Он отказывается от идеи о том, что планеты движутся по круговым орбитам, что в конечном итоге позволяет ему решить проблему с расхождением теории с наблюдаемыми данными. Согласно его выводам, планеты движутся по орбитам, имеющим форму эллипса, причем Солнце находится в одном из его фокусов. Так что расстояние между планетой и Солнцем периодически меняется. Этот вывод известен как первый закон Кеплера .

2. Математическое обоснование

Посмотрим теперь, как первый закон Кеплера согласуется с законом всемирного тяготения. Для этого выведем закон движения тела в гравитационном поле, обладающем сферической симметрией. В этом случае выполняется закон сохранения момента импульса тела $\vec{L}=[\vec{r},\vec{p}]$. Это значит, что тело будет двигаться в плоскости, перпендикулярной вектору $\vec{L}$, причем ориентация этой плоскости в пространстве неизменна. В таком случае удобно использовать полярную систему координат $(r, \phi)$ с началом в источнике гравитационного поля (т.е. вектор $\vec{r}$ перпендикулярен вектору $\vec{L}$). Т.е. одно из тел (Солнце) мы помещаем в начало координат, и ниже выведем закон движения второго тела (планеты) в этом случае.

Нормальная и тангенциальная составляющие вектора скорости второго тела в выбранной системе координат выражаются следующими соотношениями (здесь и далее точка означает производную по времени):

$$ V_{r}=\dot{r}; V_{n}=r\dot{\phi} $$

Закон сохранения энергии и момента импульса в этом случае имеют следующий вид:

$$E = \frac{m\dot{r}^2}{2}+\frac{m(r\dot{\phi})^2}{2}-\frac{GMm}{r}=const \hspace{3cm}(2.1)$$ $$L = mr^2\dot{\phi}=const \hspace{3cm}(2.2)$$

Здесь $G$ - гравитационная постоянная, $M$ - масса центрального тела, $m$ - масса "спутника", $E$ - полная механическая энергия "спутника", $L$ - величина его момента импульса.

Выражая $\dot{\phi}$ из (2.2) и подставляя его в (2.1), получаем:

$$ E = \frac{m\dot{r}^2}{2}+\frac{L^2}{2mr^2}-\frac{GMm}{r} \hspace{3cm}(2.3) $$

Перепишем полученное соотношение следующим образом:

$$ dt=\frac{dr}{\sqrt{\frac{2}{m}(E-\frac{L^2}{2mr^2}+\frac{GMm}{r})}} \hspace{3cm}(2.4)$$

Из соотношения (2.2) следует:

$$ d\phi=\frac{L}{mr^2}dt $$

Подставляя вместо $dt$ выражение (2.4), получаем:

$$ d\phi=\frac{L}{r^2}\frac{dr}{\sqrt{2m(E-\frac{L^2}{2mr^2}+\frac{GMm}{r})}} \hspace{3cm}(2.5) $$

Чтобы проинтегрировать полученное выражение, перепишем выражение, стоящее под корнем в скобках, в следующем виде:

$$ E-((\frac{GMm^{3/2}}{\sqrt{2}L})^2 - \frac{GMm}{r} + \frac{L^2}{2mr^2}) + (\frac{GMm^{3/2}}{\sqrt{2}L})^2=$$ $$ =E-(\frac{GMm^{3/2}}{\sqrt{2}L}-\frac{L}{r\sqrt{2mr}})^2 + (\frac{GMm^{3/2}}{\sqrt{2}L})^2=$$ $$ =\frac{L^2}{2m}(\frac{2mE}{L^2}+(\frac{GMm^2}{L^2})^2-(\frac{GMm^2}{L^2}-\frac{1}{r})^2) $$

Введем следующее обозначение:

$$ \frac{GMm^2}{L^2}\equiv\frac{1}{p} $$

Продолжая преобразования, получаем:

$$ \frac{L^2}{2m}(\frac{2mE}{L^2}+(\frac{GMm^2}{L^2})^2-(\frac{GMm^2}{L^2}-\frac{1}{r})^2)=$$ $$\frac{L^2}{2m}(\frac{2mE}{L^2} + \frac{1}{p^2}-(\frac{1}{p}-\frac{1}{r})^2)=$$ $$\frac{L^2}{2m}(\frac{1}{p^2}(1+\frac{2EL^2}{(GM)^2m^3})-(\frac{1}{p}-\frac{1}{r})^2) $$

Введем обозначение:

$$ 1+\frac{2EL^2}{(GM)^2m^3} \equiv e^2 $$

В этом случае преобразуемое выражение принимает следующий вид:

$$ \frac{L^2e^2}{2mp^2}(1-(\frac{p}{e} (\frac{1}{p}-\frac{1}{r}))^2) $$

Введем для удобства следующую переменную:

$$ z=\frac{p}{e} (\frac{1}{p}-\frac{1}{r}) $$

Теперь уравнение (2.5) принимает вид:

$$ d\phi=\frac{p}{er^2}\frac{dr}{\sqrt{1-z^2}}=\frac{dz}{\sqrt{1-z^2}}\hspace{3cm}(2.6) $$

Проинтегрируем полученное выражение:

$$ \phi(r)=\int\frac{dz}{\sqrt{1-z^2}}=\arcsin{z}-\phi_0 $$

Здесь $\phi_0$ - конатснта интегрирования.

Наконец, получаем закон движения:

$$ r(\phi)=\frac{p}{1-e\sin{(\phi+\phi_0)}} $$

Положив константу интегрирования $\phi_0=\frac{3\pi}{2}$ (данное значение соответствует экстремуму функции $r(\phi)$), окончательно получаем:

$$r(\phi)=\frac{p}{1+e\cos{\phi}} \hspace{3cm}(2.7)$$ $$p=\frac{L^2}{GMm^2}$$ $$e=\sqrt{1+\frac{2EL^2}{(GM)^2m^3}}$$

Из курса аналитической геометрии известно, что выражение, полученное для функции $r(\phi)$, описывает кривые второго порядка: эллипс, параболу и гиперболу. Параметры $p$ и $e$ называют, соответственно, фокальным параметром и эксцентриситетом кривой. Фокальный параметр может принимать любое положительное значение, а величина эксцентриситета определяет вид траектории: если $e\in}

Читайте также: